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Abstract 
 

This paper presents a new graph cut-based multiple active contour algorithm to detect optimal boundaries 
and regions in images without initial contours. The task of multiple active contours is framed as a 
partitioning problem by assuming that image data are generated from a finite mixture model with unknown 
number of components. Then, the partitioning problem is solved within a divisive graph cut framework 
where multi-way minimum cuts for multiple contours are efficiently computed in a top-down way through a 
swap move of binary labels. A split move is integrated into that framework to estimate the model parameters 
associated with regions without the use of initial contours and seed points. The number of regions is also 
estimated as a part of the algorithm. Experimental results of boundary and region detection of natural images 
are presented to demonstrate the effectiveness of the proposed algorithm. 

 
1. Introduction 

Most of the works for boundary and region detection 
from images have been done by using active contours [4, 
5], which detect region boundaries by evolving initial 
contours or seed points close to true ones toward the 
closest edges or toward the boundary between two 
homogeneous regions. However, such initial contours are 
far to seek without human assistance. Clearly, it limits the 
use of active contours, especially for detecting the complex 
boundary of a number of regions. Therefore, this work 
focused on how to avoid the use of initial contours or seed 
points. 

The advantages of interactive graph cuts [1] and active 
contours have been combined to detect optimal boundaries 
in images [2]. User-specified seed points or contours have 
been used to define source and sink nodes of graph and 
used to compute the regional property of object and 
background [1, 2]. It has been extended to the boundary 
detection of multiple regions using the interactive multi-
way graph cuts [1]. Although the graph cut method 
dramatically improved the performance of active contours, 
the problem associated with initial contours or seed points 
remained unsolved. 

The aim of this work is to investigate a new graph cut-
based multiple active contour (MAC) algorithm without 
initial contours and seed points. For the aim, a new graph 
cut framework is introduced to avoid the use of the 
interactive multi-way graph cuts [1-3], which is inadequate 
to this work, since it is hard to set the sink and source 
nodes of multi-way graph without human assistance and 
prior knowledge, especially the number of labels. In the 
new framework, the task of MAC is framed as divisive 
partitioning (clustering) which parts given data into a 
hierarchy of groups, each with different properties, in a 
top-down (divisive) way. Other partitioning and clustering 
techniques have been studied for automatic image 
segmentation, e.g., the normalized cuts [9] and the mean 
shift algorithm [6], but their performances of boundary and 
region detection were not satisfactory. Fig. 1 illustrates the 

proposed framework with an example, which shows that 
the source image is divisively partitioned into similar color 
regions with contours (partitioning cuts) representing 
region boundaries. 

The MAC model of this work assumes that image data 
are generated from a finite mixture model with unknown 
number of components. Then, the MAC model is 
formulated in terms of energy minimization and solved 
within the divisive graph cut framework as follows: The 
image is partitioned into two regions by computing a 
minimum cut of the energy with a swap move of binary 
labels [3], and then the same procedure is recursively 
applied to each region to obtain new regions until some 
stopping conditions are met. A split move is integrated 
with the swap move to set the initial values of the model 
parameters. Usual split moves based on random sampling, 
e.g., see [7], are computationally too expensive. Instead, 
the split move of this work employs a logistic model to 
split regions and the logistic model is learned 
unsupervisedly from the first and second moments of 
image data. The effectiveness of the proposed algorithm is 
demonstrated with the boundary and region detection 
results of some natural images from the Berkeley image 
segmentation database [8]. The results of the proposed 
algorithm are compared with those of the normalized cut 
algorithm and the mean-shift algorithm. 

This paper is organized as follows. Section 1 describes 
the proposed multiple active model. Section 2 introduces 
the divisive graph cuts framework and explains the swap 
move and the split move within that framework. Sections 4 
and 4 present experimental results and conclusions. 

2. The multiple active contour model 

The aim of the MAC model is to partition the overall 
region R of a given image into K disjoint regions 
{R1,…,RK}, with K contours {C1,…,CK} corresponding to 
the boundary of each of that regions. The number K is 
unknown in general cases. For this aim, the image is 
modelled with a finite mixture model with K components 
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and each region is assigned to one of the K components of 
the mixture model. Low-level image features, e.g., 
intensity, color, texture, and motion, can be used for that 
image model. In this work, RGB color is selected as image 
feature, since it is the most common and important feature 
among those and also widely used in other active contour 
models [4, 5]. The image is an array z={z1,…,zp,…,z|R|} of 
image data in RGB color space, where p is the index of 
data and |R| the number of data in the region R. Then, the 
distribution of that image data is a mixture density model 
with unknown K components: 

( ) ( )| ,p k k p k
k

f fα θΘ =∑z z           (1) 

where Θ={(α1,θ1),…,(αK,θK)} is an unknown set consisting 
of mixing weights ak and model parameters θk given a 
parametric density model fk(·|θk) for the k-th component 
density model. However, the mixture model does not 
describe from which component each datum zp is generated. 
To indicate the assignment of each datum, a label vector 
c={cp|p∈R} with cp ∈{l1,…,lK} and cp =lk 
if p∈Rk is introduced. Given the value of cp, each image 
datum zp is generated from one of the components of the 
mixture distribution. Therefore, the mixture model can be 
written as a product 

( ) ( )( )| , ,
p kc l

p p k k p k
k

f c f
δ

α θ
⎡ ⎤=⎣ ⎦Θ =∏z z     (2) 

where the Kronecker delta δ[cp= lk]=1 if cp= lk , and δ[cp= 
lk]=0 otherwise. The above label vector c implicitly 
represents the K contours by indicating the inner region of 
each contour with the label value as the level set functions 
do in the level set method. The label vector c work as a 
latent variable in the parameter estimation of mixture 
models via the expectation maximization (EM) algorithm, 
of which details will be explained later. 

The MAC model is formulated in terms of energy 
minimization as follows. A discrete energy E is defined 
over the model parameters Θ and the label vector c. Then, 
the MAC are computed by alternatively minimizing the 
energy E with respect to Θ and c. By combining the 
regional and boundary properties of image data, the energy 
function E is defined by 

( ) ( ) ( ), , ,E c A c B cλΘ = ⋅ Θ +         (3) 
where A and B are the regional and boundary energy terms, 
respectively, and a positive constant λ balances the 
importance between the two energy terms. The regional 
energy term A is defined by 

( ), ,p
p R

A c A
∈

Θ = ∑               (4) 

where  

( )ln , .p p pA f c= − Θz            (5) 

Each component of the mixture model can be modelled 
with a normal density function, which is common in finite 
mixture models [7]. In addition, the presence of outliers 
can be modelled by incorporating robust statistical 
techniques into the model, which is important for practical 
applications, since statistical outliers may be encountered 
in image data. Then, the component model fk(·|θk) is 
defined for all k to be an elliptically symmetric density 
function with mean vector mk and covariance matrix Sk as 

( ) ( )( ),1 2

1, exp ,
detk p k k p k

k

f S r
S

ρ∝ −z m       (6) 

where ρ(·) is the Huber influence function and the 
square of the residual rp,k is defined by 

( ) ( ) ( )2 1
,

1, , .
2

T

p k p k k p k k p kr S S −= − −z m z m z m     (7) 

The MAC should be localized along with image edges 
as in other active contour models [4]. In addition, the 
computation of geodesics or minimal length curves is also 
demanded to regularize the shape of the contours [2, 5]. 
The above two boundary constraints for the MAC will be 
integrated into the boundary energy term B, which is 
defined by 

( )
( )

,
,

,p q p q
p q N

B c B c cδ
∈

⎡ ⎤= ⋅ ≠⎣ ⎦∑          (8) 

where N is the set of is the set of all pairs of neighboring 
pixels, which is varied with the size of neighborhood 
system, and δ[cp≠ lk]=1 if cp≠ lk and δ[cp≠ lk]=0 otherwise, 
which represents the Potts interaction model to impose a 
penalty for discontinuity between p and q of similar feature. 
This interaction model encourages the labelling c 
consisting of several regions by enforcing pixels of the 
same region to have equal labels.  

The function Bp,q is defined as a product of two 
functions 

, , , ,p q p q p qB G W= ⋅               (9) 
where two functions Gp,q and Wp,q specifies the above two 
boundary properties of the MAC, respectively. The first 
function Gp,q is defined by 

( )2

, , ,
1exp , 1 ,
2p q Q p h q hG dν ν⎛ ⎞= ⋅ − + −⎜ ⎟

⎝ ⎠
z z     (10) 

where ν=[0,1] is a constant, dQ(·) denotes the distance 
normalized by a matrix Q, and zp the feature vector filtered 
with a Gaussian kernel at the scale of h pixels. If the 
constant ν of the model is set to zero, the influence of 
image edges can be nullified as in the active contour model 
without edges [5], which is advantageous when edges are 
unavailable or unreliable. As shown in Fig. 2(a), contours 

Divisive graph cut partitioningSource image Output  result

Fig. 1 An illustration of the divisive graph cut framework.
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can be obtained with ν=0, while it may not account image 
boundaries. The influence of image boundaries is 
maximized when ν=1. However, superfluous boundaries 
and regions may occur at some pixels of which the 
boundary strength is too high (see Fig. 2(b)). This problem 
can be avoided by setting the value of ν below one as 
in Fig. 2(c). Additionally, a smoothing procedure of image 
data can be performed with a Gaussian filter of scale σ a 
priori. This smoothing procedure is also effective against 
superfluous boundaries and regions, which is illustrated in 
Fig. 2(d). The matrix Q has been estimated as a covariance 
matrix with the value of zp,h - zq,h for a given scale factor σ 
and all pairs of p and q in N. This function penalizes a lot 
discontinuity between p and q of which the image data are 
similar to each other. The penalty function Gp,q enforces 
the solution c to partition the given image along with 
image edges. 

In a regular and equal spacing grid graph with a 
neighborhood system, the second penalty function 
Wp,q is defined by 

( )

2
,

, ,
2 ,

p q
p q

I

W
d p q

δ φ⋅Δ
=

⋅
             (11) 

where δ is the cell size, Δφp,q the angular difference to 
the nearest family of edge-lines given the grid, dI(p,q) the 
distance between p and q and I the identity matrix. The cell 
size δ is usually set to one and the angular difference 
Δφp,q ≈ 2π/m, where m is the size of neighborhood 
system, e.g., m=16 in case of 16-neighborhood system. The 
function Wp,q computes the Euclidean cut metric between p 
and q, which approximates the length of curves based on 
the Cauchy-Crofton formula from integral geometry [2]. 

3. The divisive graph cut framework 

The graph cut algorithm [3] can find an optimal 
labelling c of the energy E following some procedure to 
estimate the value of model parameters Θ. Many 
estimation techniques, such as the EM algorithm, can be 
applied to the parameter estimation if initial values are 
available. However, it is difficult to set initial values 
without prior knowledge, such as initial contours or seed 
points. In addition, the image is modelled with the mixture 
of K normal distribution. The component number K can be 
given a prior in some cases, e.g., in the case of interactive 
segmentation [1, 5], but it is unknown in general cases. 

The divisive graph cut framework overcomes the above 
difficulties of the MAC model. The basic idea is to solve 
the multiple labelling problem in the MAC model as a 
binary labelling problem. The optimal solution to the 

binary labeling problem can be found by using any min-
cut/max-flow algorithms solving s-t minimum cuts on 
graphs as illustrated in Fig. 3. In a similar top-down way, 
the K components of the mixture model are learned by 
starting with two components. 

Let's denote R0 a current region and N0 the set of all 
pairs of neighboring pixels in R0, where R0 ⊂R and N0⊂N. 
Then, the task of the divisive graph cut algorithm is to 
partition the current region R0 into two new subregions R1 
and R2, s.t. R1∪ R2= R0 and R1∩ R2= Ø, according to a 
simplified MAC model, which is now defined over R0 and 
N0 with respect to a label vector c0 and model parameters 
Θ0. The simplified energy E0 at the current stage is 

( )
( )0 0

0 0 0 ,
,

, ,p p q p q
p R p q N

E c A B c cλ δ
∈ ∈

⎡ ⎤Θ = ⋅ + ⋅ ≠⎣ ⎦∑ ∑   (12) 

where Θ0 ={(α1,θ1),(α2,θ2)} and the label vector c0 is 
binary-valued, i.e. c0 = {cp|p∈R0} with cp=l1 if p∈R1 and 
cp=l2 if p∈R2. Given an initial estimate of the model 
parameters Θ0, an optimal labeling c0

* can be obtained by 
minimizing E0 over all labellings within one swap move of 
c0 as in [3] where an approximate solution to the multiple 
labelling problem is iteratively obtained over all labellings 
with the swap move of each pair of possible labels. 

Let G0=(V0,E0) be a weighted graph with two 
distinguished terminals, source s and sink t, where V0 is a 
set of nodes and E0 a set of edges. Then, the optimal 
labelling c0 corresponds to a s-t minimum cut on a graph 
G0=(V0,E0), where the set of nodes V0 is the sum of the set 
of pixels at the current region R0 and terminal nodes s and t 
corresponding to two labels l1 and l2: 

{ }0 0 ,  .R s t= ∪V              (13) 
Two types of edges, n-links and t-links, make up the set of 
edges E0, where each pixel p in R0 has two t-links, {p, s} 

(a) (b) (c) (d)
Fig. 2 Example contours obtained with the proposed model. (a) v=0. (b) v=1, h=0. (c) v=0.9, h=0. (d) v=1, h=1.
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s

s-t minimum cut new s-t minimum cut
Fig. 3 Divisive graph cuts. A s-t minimum cut algorithm is
recursively applied to subgraphs to obtain new s-t minimum
cuts.
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and {p, t}, and each pair of neighboring pixels {p, q} in N0 
is connected by a n-link, which is also denoted by {p, q}. 
Therefore, the set of edges E0 is 

 { }0 0 { ,  },  { ,  } .N p s p t= ∪E         (14) 

To completely define the graph G0 for the s-t minimum cut 
computation, the weights of edges in E0 are listed in the 
following table. Then, any min-cut/max-flow algorithms 
can be applied to compute a minimum cost cut on two 
terminal graphs [3]. 
 

edge weight for 

{p, s} ( )1 1 ,1
1ln ln det
2 pS rλ α ρ⎛ ⎞⋅ − + +⎜ ⎟

⎝ ⎠
 p∈R1 

{p, t} ( )2 2 ,2
1ln ln det
2 pS rλ α ρ⎛ ⎞⋅ − + +⎜ ⎟

⎝ ⎠
 p∈R2 

{p, q} 
( )2

, ,
1exp , 1
2 Q p h q hdν ν⎛ ⎞⎛ ⎞⋅ − + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

z z

( )
,

2 ,
p q

Id p q
δ φ⋅Δ

×
⋅

 
{p, q} 
∈N0 

 
A parameter estimation step follows the above labelling 

step to obtain the optimal model parameters Θ0
* using the 

obtained optimal labelling c0
*, where the two successive 

steps, i.e. the estimation and labelling steps, composes one 
iteration of swap move of the proposed algorithm, which is 
indexed by n to present clearly. The parameter estimation 
is performed using the EM algorithm as follows. First, the 
current parameter values are computed as 

{ }

0

0

( )

1, 2

p ip Rn
i

p jj p R

c l

c l

δ
α

δ

∗
∈

∗
∈ ∈

⎡ ⎤=⎣ ⎦=
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∑
∑ ∑

        (15) 

0
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( ) p p ip Rn
i

p ip R

c l
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δ

δ

∗
∈

∗
∈
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∑
∑

z
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S
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∗
∈

∗
∈
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∑
∑

z m z m   (17) 

for i=1, 2. The current parameter values are used as the 
initial estimates for the EM algorithm. Then, the initial 
estimates are iteratively updated using the following E-step 
and M-step: 
E-Step: 

( )
( ){ }

( ) ( ) ( )
( )

, ( ) ( ) ( )
1,2

,
,

,

n n n
i i p i in

p i n n n
j j p j jj

f S

f S

α
η

α
∈

=
∑

z m

z m
       (18) 

where ηp,i (n) is the posterior probability that each pixel p 
belongs to the region Ri. 

( ) ( )
,( )

, ( ) ( )
,

1                if 
,

    o.w.

n n
p i in

p i n n
i p i

r
w

r

ε

ε

⎧ ≤⎪= ⎨
⎪⎩

        (19) 

where wp,i
(n) is the weight assigned to each pixel p, which is 

inversely proportional to rp,i
(n). The tunning constant εi

(n) is 
computed with εi

(n)=β·medianp|rp,i
(n)|, where β=1.4826 

typically. 
M-Step: 

0

( )
,

0| |

n
p ip R

i R

η
α ∈∗ =

∑                (20) 

0

0
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, ,

( ) ( )
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η
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∑
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z
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S

w

η

η
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− − ⋅
=
∑

∑
z m z m     (22) 

where the product of two weighting factors ηp,i (n) wp,i
(n) 

replaces the delta function δ[cp
*= li] with a confidence 

measure how well label li fits pixel p given the observed 
data and the estimated parameters. In general, EM steps 
perform until convergence. Although the convergence is 
theoretically guaranteed, an additional process to set the 
initial value of Θ0

(0) without the value of c0
(0) at the first 

step is inevitably needed. For the aim, a split move is 
introduced. 
Let m0 and S0 be the mean vector and the covariance 
matrix of the image data in R0, respectively. The mixing 
weights α1 and α2 and mean vectors m1 and m2 should 
satisfy that α1+α2=1 and α1m1+ α2m2=m0. If the initial 
value of component weights are set to α1= α2 =1/2. the 
mean vector m0 becomes the average of two unknown 
vectors m1 and m2, i.e. m0=(m1+ m2)/2. Let the covariance 
matrices S1 and S2 be S1= S2=σ-2I, where the constant σ is 
the standard deviation of noise. Let's define a difference 
vector Δm between m1 and m2 as Δm=m1-m2 and assume 
that the density models f1(·|θ1

(0)) and f2(·|θ2
(0)) are usual 

normal distributions, which implies that wp,1(0)=wp,2
(0)=1 for 

all p in R0. Then, the posterior probability ηp,1
(0) (or ηp,2

(0)) 
in the E-step can be rewirtten as a logistic function 

( )
( ) ( )

( )

2
,1(0)

,1 2 2
,1 ,2

exp

exp exp

1     ,
1 exp

η
−

=
− + −

=
+ −

p
p

p p

p

r

r r

a

        (23) 

where 
( )2

0 ,σ −= ⋅Δ −T
p pa zm m           (24) 

and the other probability ηp,2
(0) (or ηp,1

(0)) is simply 
calculated with ηp,2

(0)=1- ηp,1
(0). Now, the first initial value 

Θ0
(0) can be computed using the M-step with the value of 

ηp,1
(0) and ηp,2

(0) for all p in R0. More easily, the value of 
Θ0

(0) can be initialized using the value of the initial 
labelling c0

(0), because the label of each element cp,0(0) of 
the vector c0

(0) can be initialized by 
1(0)

,0
2

   if   0
,

   if   0

≥⎧⎪= ⎨ <⎪⎩

p
p

p

l a
c

l a
             (25) 

The sign of ap can be estimated even though the value of σ 
and the magnitude of Δm are unknown. The value of m0 is 
easily computed on the original data. The direction of Δm 
has a high possibility of the coincidence with the direction 
of the eigenvector with the largest eigenvalue of the 
covariance matrix S0 [7], the unknown vector Δm is 
replaced by that eigenvector.  

The split move and the swap move described above can 
partition a current region into two subregions automatically. 
This is the basic procedure of the proposed MAC 
algorithm. This procedure is recursively applied to each 
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subregion until the number of regions K reaches to a 
predefined value K max or a new region of the size lager 
than γ|R| is no more detected. 

4. Experimental results 

For experiments, some natural color images shown in Fig. 
4 were obtained from the Berkeley image segmentation 
database [8]. To reduce the computational cost of the graph 
cut algorithm, all test images was resized to 240×160 
pixels. All computations were carried out on a desktop PC 
with a 2.13-GHz Intel Core2 CPU. The graph cut and 
energy minimization libraries [3, 10] were used for 
algorithm implementation. The value of λ was chosen to 
give the best performance for each image. The other 
constant parameters were set with h=1, K max =30 and 
γ=0.01 equally for all test images. The value of v was set 
with v=1 for the images except the one in Fig. 4(e), where 

v=0.8 was used to reduce the influence of some high-
contrasted pixels. The 16-neighborhood system was used 
to construct a regular grid-fashioned, undirected graph for 
each image. The weight for each edge was set as described 
in the preceding section. The detection results of the 
proposed MAC algorithm was compared with those of the 
normalized cut (NC) algorithm [9] and the mean shift (MS) 
algorithm [6]. The NC and MS softwares provided by the 
authors of each work were used. The bandwidth 
parameters hs and hr of the MS algorithm were also chosen 
to give the best performance for each image. The number 
of regions for each image was determined automatically in 
the MAC and MS algorithms, but it was specified a priori 
in the NC algorithm. 

Fig. 4 shows the results of the first partition. Although 
the test images had multiple regions, they were partitioned 
successfully into two regions with contours localized 
correctly along with image edges as wanted in the 
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Fig. 4 Results of the first partition corresponding to K=2 using the split move and the swap move in the proposed MAC
algorithm. (a) 0.7 sec. (b) 0.6 sec. (c) 2.2 sec. (d) 1.3 sec. (e) 0.7 sec.
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Fig. 5 Final results of automatic boundary and region detection using the proposed MAC algorithm.  (a) 3.7 sec. (b) 4.6 sec.
(c) 7.0 sec.  (d) 6.5 sec. (e) 10.0 sec.
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proposed algorithm. The swap move computed a partition 
accurately, even though the split move gave a little 
inaccurate partition. The final results of boundary and 
region detection were in Fig. 5. The numbers of detected 
regions from each image were 4, 3, 5, 6, and 10. In Fig. 6, 
the boundary detection of the MAC was compared to the 
NC and MS. To show that the MAC made a sequence of 
meaningful outputs, an output obtained prior to the final 
one was displayed in the third row. In all cases, the MAC 
detected more smooth boundaries accurately than the NC 
and MS. The MAC was slower than the MS but faster than 
the NC. 

5. Conclusion 

A new graph cuts-based multiple active contour 
algorithm was presented. The use of initial contours and 
seed points was not required contrary to other algorithms 
for active contours or interactive segmentation. The 
proposed algorithm showed better performance in 
detecting boundaries than other state-of-the-art techniques. 
The proposed identified smooth boundaries as contours 
and also generated a sequence of meaningful outputs. 
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Fig. 6 Comparison of boundary and region detection of the proposed MAC algorithm with the normalized cut algorithm and the
mean shift algorithm. (a) NC: 19.4 sec., MS: 2.5 sec. (b) NC: 19.5 sec., MS: 1.8 sec. (c) NC: 21.1 sec., MS: 1.0 sec. (d) NC:
23.3 sec., MS: 1.3 sec. (e) NC: 19.1 sec., MS: 2.8 sec.


